Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.

Publication:
Improved Prediction of Higher Heating Value of Biomass Using an Artificial Neural Network Model Based on Proximate Analysis

dc.authorscopusid56511466800
dc.authorscopusid56511715400
dc.authorscopusid23667181100
dc.authorscopusid7003728792
dc.contributor.authorUzun, H.
dc.contributor.authorYıldız Uzun, Z.
dc.contributor.authorGoldfarb, J.L.
dc.contributor.authorCeylan, S.
dc.date.accessioned2020-06-21T13:19:29Z
dc.date.available2020-06-21T13:19:29Z
dc.date.issued2017
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Uzun] Harun, Department of Chemical Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Yıldız Uzun] Zeynep, Department of Chemical Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Goldfarb] Jillian L., Boston University College of Engineering, Boston, MA, United States; [Ceylan] Selim, Department of Chemical Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractAs biomass becomes more integrated into our energy feedstocks, the ability to predict its combustion enthalpies from routine data such as carbon, ash, and moisture content enables rapid decisions about utilization. The present work constructs a novel artificial neural network model with a 3-3-1 tangent sigmoid architecture to predict biomasses’ higher heating values from only their proximate analyses, requiring minimal specificity as compared to models based on elemental composition. The model presented has a considerably higher correlation coefficient (0.963) and lower root mean square (0.375), mean absolute (0.328), and mean bias errors (0.010) than other models presented in the literature which, at least when applied to the present data set, tend to under-predict the combustion enthalpy. © 2017 Elsevier Ltden_US
dc.identifier.doi10.1016/j.biortech.2017.03.015
dc.identifier.endpage130en_US
dc.identifier.issn0960-8524
dc.identifier.issn1873-2976
dc.identifier.pmid28319760
dc.identifier.scopus2-s2.0-85015441700
dc.identifier.scopusqualityQ1
dc.identifier.startpage122en_US
dc.identifier.urihttps://doi.org/10.1016/j.biortech.2017.03.015
dc.identifier.volume234en_US
dc.identifier.wosWOS:000402477000016
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofBioresource Technologyen_US
dc.relation.journalBioresource Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Neural Networken_US
dc.subjectBiomassen_US
dc.subjectHigher Heating Valueen_US
dc.subjectProximate Analysisen_US
dc.titleImproved Prediction of Higher Heating Value of Biomass Using an Artificial Neural Network Model Based on Proximate Analysisen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files