Publication: 5g Milimetre Dalga Haberleşme Sistemleri İçin Mımo Anten Tasarımı
Abstract
Haberleşme alanında sürekli iyileştirme gerektiren 5G anten tasarımı günümüzün popüler araştırma konularındandır. 5G sisteminde kanal kapasitesi mikroşerit MIMO anteni kullanılarak arttırılabilir. MIMO performans iyileştirmesi sağlamak için birden fazla anten kullanan bir teknolojidir. Mikroşerit anten, diğer anten türlerine göre küçük, düşük profilli, üretimi ve entegrasyonu kolay ve uygun maliyetli olma avantajlarına sahip olup ikili ve üçlü çalışma frekanslarını desteklemektedir. Bu tez çalışmasının temel amacı, 5G haberleşme sistemlerinde kullanılabilecek çift çalışma bantlı MIMO mikroşerit antenler tasarlamaktır. Bunun için ilk önce dört elemanlı, 1.55 mm yükseklikli, FR-4 alt tabakalı bir mikroşerit anten tasarlanmıştır. İlk tasarım 4 × 4 MIMO şeklinde olup çalışma frekansları 26 GHz ve 38 GHz'dir. Daha sonra ABD standardına uygun ve 28 ve 38 GHz'de çalışan bir anten tasarımı yapılmıştır. Bu çalışmada antenin güçlü ve zayıf yönlerini belirlemek ve optimize etmek için CST yazılımı kullanılmıştır. Tasarlanan ilk anten 23 - 28.5 GHz ve 35 - 39.5 GHz frekans aralıklarında çalışmaktadır. Antenin 26 GHz'de kazancı 9.86 dBi olup bu frekanstaki verimi %60'ın üzerindedir. 38 GHz frekansında ise kazancı 6.71 dBi, verimi ise %50'nin üzerindedir. Tasarlanan ikinci anten 26 - 31 GHz ve 34.5 - 40 GHz frekans aralığında çalışmakta olup, 28 GHz'deki verimi %70'in üzerinde, kazancı 10.6 dBi'dır. 38 GHz'de frekansında ise kazancı 6.65 dBi iken verimi %50'nin üzerindedir. Simülasyon sonuçlarına göre tasarlanan her iki anten için de ortalama izolasyon birinci bantta -20 dB ve ikinci bantta -30 dB'dir. Ayrıca DG yaklaşık 10 dB, ECC 1 × 10-6'den daha düşüktür. Bu değerler literatürdeki benzer anten tasarımları ile karşılaştırıldığında oldukça iyi düzeydedir.
One of the most sought-after research topics in telecommunication is the 5G antenna design which needs continuous improvement. The channel capacity of the 5G system is increased by using the microstrip MIMO antenna. MIMO is an antenna technology that utilizes several antennas to provide performance improvements. Whereas, microstrip antenna has the advantages of being small, low-profile, easy to manufacture and integrate, and affordable over other types of antennas. Also, one patch can reinforce dual and triple resonant frequencies. The main objective of this thesis is to design a dual-band MIMO microstrip antenna for serving the 5G communication system. Initially, the proposed four-element structure contained a slotted microstrip antenna based on an FR-4 substrate with a height of 1.55 mm. The first design was a 4 × 4 MIMO operating at 26 and 38 GHz. Then, numerous procedures were applied to the first design to comply with the U.S. standard, which operates at 28 and 38 GHz. These were continuously generated with the CST software simulations to identify the antenna's strengths and weaknesses and optimize them accordingly. The first design of the proposed antenna operates from 23 to 28.5 GHz and from 35 to 39.5 GHz. At 26 GHz, it features a gain of 9.86 dBi with a radiation efficiency of more than 60%. While at 38 GHz, it features a gain of 6.71 dBi with a radiation efficiency of more than 50%. The second design operates from 26 to 31 GHz and from 34.5 to 40 GHz. A high gain of 10.6 dBi with an efficiency of more than 70% was featured at 28 GHz. While at 38 GHz, it features a high gain of 6.65 dBi and an efficiency of 50%. For both designs, we figured out that the average isolation is -20 dB and -30 dB at the first and second bands, respectively, according to simulation results. As well, the DG is nearly 10 dB, and the ECC is less than 1 × 10-6, providing excellent performance compared to previous antenna designs.
One of the most sought-after research topics in telecommunication is the 5G antenna design which needs continuous improvement. The channel capacity of the 5G system is increased by using the microstrip MIMO antenna. MIMO is an antenna technology that utilizes several antennas to provide performance improvements. Whereas, microstrip antenna has the advantages of being small, low-profile, easy to manufacture and integrate, and affordable over other types of antennas. Also, one patch can reinforce dual and triple resonant frequencies. The main objective of this thesis is to design a dual-band MIMO microstrip antenna for serving the 5G communication system. Initially, the proposed four-element structure contained a slotted microstrip antenna based on an FR-4 substrate with a height of 1.55 mm. The first design was a 4 × 4 MIMO operating at 26 and 38 GHz. Then, numerous procedures were applied to the first design to comply with the U.S. standard, which operates at 28 and 38 GHz. These were continuously generated with the CST software simulations to identify the antenna's strengths and weaknesses and optimize them accordingly. The first design of the proposed antenna operates from 23 to 28.5 GHz and from 35 to 39.5 GHz. At 26 GHz, it features a gain of 9.86 dBi with a radiation efficiency of more than 60%. While at 38 GHz, it features a gain of 6.71 dBi with a radiation efficiency of more than 50%. The second design operates from 26 to 31 GHz and from 34.5 to 40 GHz. A high gain of 10.6 dBi with an efficiency of more than 70% was featured at 28 GHz. While at 38 GHz, it features a high gain of 6.65 dBi and an efficiency of 50%. For both designs, we figured out that the average isolation is -20 dB and -30 dB at the first and second bands, respectively, according to simulation results. As well, the DG is nearly 10 dB, and the ECC is less than 1 × 10-6, providing excellent performance compared to previous antenna designs.
Description
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
72
