Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.

Publication:
Sobolev Type Spaces Based on Lorentz-Karamata Spaces

dc.authorscopusid24176919100
dc.contributor.authorEryilmaz, İ.
dc.date.accessioned2020-06-21T13:39:26Z
dc.date.available2020-06-21T13:39:26Z
dc.date.issued2016
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Eryilmaz] I., Department of Mathematics, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractIn this paper, firstly Lorentz-Karamata-Sobolev spaces Wk<inf>L(p;q;b)</inf> (ℝn) of integer order are introduced and some of their important properties are emphasized. Also, Banach spaces Ak<inf>L(p;q;b)</inf> (ℝn) = L1 (ℝn) ∩ Wk<inf>L(p;q;b)</inf> (ℝn) (Lorentz-Karamata-Sobolev algebras) are studied. Using a result of H.C. Wang, it is showed that Banach convolution algebras Ak<inf>L(p;q;b)</inf> (ℝn) don’t have weak factorization and the multiplier algebra of Ak L(p;q;b) (Rn) coincides with the measure algebra M(ℝn) for 1 < p < 1 and 1 ≤ q < ∞. © 2016, University of Nis. All rights reserved.en_US
dc.identifier.doi10.2298/FIL1611023E
dc.identifier.endpage3032en_US
dc.identifier.issn0354-5180
dc.identifier.issue11en_US
dc.identifier.scopus2-s2.0-85008397788
dc.identifier.scopusqualityQ3
dc.identifier.startpage3023en_US
dc.identifier.urihttps://doi.org/10.2298/FIL1611023E
dc.identifier.volume30en_US
dc.identifier.wosWOS:000393212700014
dc.identifier.wosqualityQ2
dc.institutionauthorEryilmaz, İ.
dc.language.isoenen_US
dc.publisherUniversity of Nis filomat@pmf.ni.ac.rsen_US
dc.relation.ispartofFilomaten_US
dc.relation.journalFilomaten_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFP-Algebraen_US
dc.subjectLorentz-Karamata Spaceen_US
dc.subjectSlowly Varying Functionen_US
dc.subjectSobolev Spaceen_US
dc.subjectWeak Factorizationen_US
dc.titleSobolev Type Spaces Based on Lorentz-Karamata Spacesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files