Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.

Publication:
A New Representation of Elements of Binary Fields with Subquadratic Space Complexity Multiplication of Polynomials

dc.authorscopusid6603589033
dc.authorscopusid15833929800
dc.authorscopusid6504402955
dc.contributor.authorÖzbudak, F.
dc.contributor.authorAkleylek, S.
dc.contributor.authorCenk, M.
dc.date.accessioned2020-06-21T14:04:30Z
dc.date.available2020-06-21T14:04:30Z
dc.date.issued2013
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Özbudak] Ferruh, Department of Mathematics, Middle East Technical University (METU), Ankara, Ankara, Turkey, Middle East Technical University (METU), Ankara, Ankara, Turkey; [Akleylek] Sedat, Middle East Technical University (METU), Ankara, Ankara, Turkey, Department of Computer Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Cenk] Murat, Middle East Technical University (METU), Ankara, Ankara, Turkey, Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, ON, Canadaen_US
dc.description.abstractIn this paper, Hermite polynomial representation is proposed as an alternative way to represent finite fields of characteristic two. We show that multiplication in Hermite polynomial representation can be achieved with subquadratic space complexity. This representation enables us to find binomial or trinomial irreducible polynomials which allows us faster modular reduction over binary fields when there is no desirable such low weight irreducible polynomial in other representations. We then show that the product of two elements in Hermite polynomial representation can be performed as Toeplitz matrix-vector product. This representation is very interesting for NIST recommended binary field GF(2571) since there is no ONB for the corresponding extension. This representation can be used to obtain more efficient finite field arithmetic. Copyright © 2013 The Institute of Electronics, Information and Communication Engineers.en_US
dc.identifier.doi10.1587/transfun.E96.A.2016
dc.identifier.endpage2024en_US
dc.identifier.issn0916-8508
dc.identifier.issn1745-1337
dc.identifier.issue10en_US
dc.identifier.scopus2-s2.0-84885053032
dc.identifier.scopusqualityQ4
dc.identifier.startpage2016en_US
dc.identifier.urihttps://doi.org/10.1587/transfun.E96.A.2016
dc.identifier.wosWOS:000326667500014
dc.identifier.wosqualityQ4
dc.language.isoenen_US
dc.publisherInstitute of Electronics, Information and Communication, Engineers, IEICEen_US
dc.relation.ispartofIEICE Transactions on Fundamentals of Electronics Communications and Computer Sciencesen_US
dc.relation.journalIeice Transactions on Fundamentals of Electronics Communications and Computer Sciencesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBinary Field Representationen_US
dc.subjectHermite Polynomialsen_US
dc.subjectPolynomial Multiplicationen_US
dc.subjectSubquadratic Space Complexityen_US
dc.titleA New Representation of Elements of Binary Fields with Subquadratic Space Complexity Multiplication of Polynomialsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files