Publication: A New Representation of Elements of Binary Fields with Subquadratic Space Complexity Multiplication of Polynomials
| dc.authorscopusid | 6603589033 | |
| dc.authorscopusid | 15833929800 | |
| dc.authorscopusid | 6504402955 | |
| dc.contributor.author | Özbudak, F. | |
| dc.contributor.author | Akleylek, S. | |
| dc.contributor.author | Cenk, M. | |
| dc.date.accessioned | 2020-06-21T14:04:30Z | |
| dc.date.available | 2020-06-21T14:04:30Z | |
| dc.date.issued | 2013 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Özbudak] Ferruh, Department of Mathematics, Middle East Technical University (METU), Ankara, Ankara, Turkey, Middle East Technical University (METU), Ankara, Ankara, Turkey; [Akleylek] Sedat, Middle East Technical University (METU), Ankara, Ankara, Turkey, Department of Computer Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Cenk] Murat, Middle East Technical University (METU), Ankara, Ankara, Turkey, Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, ON, Canada | en_US |
| dc.description.abstract | In this paper, Hermite polynomial representation is proposed as an alternative way to represent finite fields of characteristic two. We show that multiplication in Hermite polynomial representation can be achieved with subquadratic space complexity. This representation enables us to find binomial or trinomial irreducible polynomials which allows us faster modular reduction over binary fields when there is no desirable such low weight irreducible polynomial in other representations. We then show that the product of two elements in Hermite polynomial representation can be performed as Toeplitz matrix-vector product. This representation is very interesting for NIST recommended binary field GF(2571) since there is no ONB for the corresponding extension. This representation can be used to obtain more efficient finite field arithmetic. Copyright © 2013 The Institute of Electronics, Information and Communication Engineers. | en_US |
| dc.identifier.doi | 10.1587/transfun.E96.A.2016 | |
| dc.identifier.endpage | 2024 | en_US |
| dc.identifier.issn | 0916-8508 | |
| dc.identifier.issn | 1745-1337 | |
| dc.identifier.issue | 10 | en_US |
| dc.identifier.scopus | 2-s2.0-84885053032 | |
| dc.identifier.scopusquality | Q4 | |
| dc.identifier.startpage | 2016 | en_US |
| dc.identifier.uri | https://doi.org/10.1587/transfun.E96.A.2016 | |
| dc.identifier.wos | WOS:000326667500014 | |
| dc.identifier.wosquality | Q4 | |
| dc.language.iso | en | en_US |
| dc.publisher | Institute of Electronics, Information and Communication, Engineers, IEICE | en_US |
| dc.relation.ispartof | IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences | en_US |
| dc.relation.journal | Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Binary Field Representation | en_US |
| dc.subject | Hermite Polynomials | en_US |
| dc.subject | Polynomial Multiplication | en_US |
| dc.subject | Subquadratic Space Complexity | en_US |
| dc.title | A New Representation of Elements of Binary Fields with Subquadratic Space Complexity Multiplication of Polynomials | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
