Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.

Publication:
Using Artificial Neural Network Application in Modeling the Mechanical Properties of Loading Position and Storage Duration of Pear Fruit

dc.authorscopusid57960348300
dc.authorscopusid56092042400
dc.contributor.authorCevher, Elcin Yesiloglu
dc.contributor.authorYildirim, Demet
dc.contributor.authorIDYeşi̇loğlu Cevher, Elçi̇n/0000-0001-9062-923X
dc.date.accessioned2025-12-11T01:11:22Z
dc.date.issued2022
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Cevher, Elcin Yesiloglu] Univ Ondokuz Mayis, Fac Agr, Dept Agr Machinery & Technol Engn, TR-55139 Samsun, Turkey; [Yildirim, Demet] Black Sea Agr Res Inst, Soil & Water Resources Dept, Agr Irrigat & Land Reclamat, TR-55300 Samsun, Turkeyen_US
dc.descriptionYeşi̇loğlu Cevher, Elçi̇n/0000-0001-9062-923Xen_US
dc.description.abstractIn the study, rupture energy values of Deveci and Abate Fetel pear fruits were predicted using artificial neural network (ANN). This research aimed to develop a simple, accurate, rapid, and economic model for harvest/post-harvest loss of efficiently predicting rupture energy values of Deveci and Abate Fetel pear fruits. The breaking energy of the pears was examined in terms of storage time and loading position. The experiments were carried out in two stages, with samples kept in cold storage immediately after harvest and 30 days later. Rupture energy values were estimated using four different single and multi-layer ANN models. Four different model results obtained using Levenberg-Marquardt, Scaled Conjugate Gradient, and resilient backpropagation training algorithms were compared with the calculated values. Statistical parameters such as R-2 , RMSE, MAE, and MSE were used to evaluate the performance of the methods. The best-performing model was obtained in network structure 5-1 that used three inputs: the highest R-2 value (0.90) and the lowest square of the root error (0.018), and the MAE (0.093).en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.3390/pr10112245
dc.identifier.issn2227-9717
dc.identifier.issue11en_US
dc.identifier.scopus2-s2.0-85141708098
dc.identifier.scopusqualityQ3
dc.identifier.urihttps://doi.org/10.3390/pr10112245
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41978
dc.identifier.volume10en_US
dc.identifier.wosWOS:000882255800001
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofProcessesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSoft Computing Techniqueen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectRupture Energyen_US
dc.subjectEnvironmental Conditionen_US
dc.titleUsing Artificial Neural Network Application in Modeling the Mechanical Properties of Loading Position and Storage Duration of Pear Fruiten_US
dc.typeArticleen_US
dspace.entity.typePublication

Files