Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.

Publication:
Two Fault Detection and Isolation Schemes for Robot Manipulators Using Soft Computing Techniques

dc.authorscopusid23502617500
dc.authorscopusid25651996700
dc.contributor.authorYüksel, T.
dc.contributor.authorSezgin, A.
dc.date.accessioned2020-06-21T14:52:53Z
dc.date.available2020-06-21T14:52:53Z
dc.date.issued2010
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Yüksel] Tolga, Electrical and Electronics Engineering Department, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Sezgin] Abdullah, Electrical and Electronics Engineering Department, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractWith growing technology, fault detection and isolation (FDI) have become one of the interesting and important research areas in modern control and signal processing. Accomplishment of specific missions like waste treatment in nuclear reactors or data collection in space and underwater missions make reliability more important for robotics and this demand forces researchers to adapt available FDI studies on nonlinear systems to robot manipulators, mobile robots and mobile manipulators. In this study, two model-based FDI schemes for robot manipulators using soft computing techniques, as an integrator of Neural Network (NN) and Fuzzy Logic (FL), are proposed. Both schemes use M-ANFIS for robot modelling. The first scheme isolates faults by passing residual signals through a neural network. The second scheme isolates faults by modelling faulty robot models for defined faults and combining these models as a generalized observers scheme (GOS) structure. Performances of these schemes are tested on a simulated two-link planar manipulator and simulation results and a comparison according to some important FDI specifications are presented. © 2009 Elsevier B.V. All rights reserved.en_US
dc.identifier.doi10.1016/j.asoc.2009.06.011
dc.identifier.endpage134en_US
dc.identifier.issn1568-4946
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-70350116152
dc.identifier.scopusqualityQ1
dc.identifier.startpage125en_US
dc.identifier.urihttps://doi.org/10.1016/j.asoc.2009.06.011
dc.identifier.volume10en_US
dc.identifier.wosWOS:000271061900012
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofApplied Soft Computingen_US
dc.relation.journalApplied Soft Computingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFault Detection and Isolationen_US
dc.subjectM-ANFISen_US
dc.subjectNeural Networksen_US
dc.subjectRobot Manipulatorsen_US
dc.titleTwo Fault Detection and Isolation Schemes for Robot Manipulators Using Soft Computing Techniquesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files