Publication: Irn1 Minkowski Uzayının Rs1(k) Uzay Formunun M-Boyutlu Altmanifoldları Üzerine
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Abstract
II IR? MINKOWSKI UZAYININ Rf{k) UZAY FORMUNUN m - BOYUTLU ALTMANİFOLDLARI ÜZERİNE ÖZET Bu çalışma, temelde beş bölümden oluşmaktadır. Giriş bölümünde, konunun hazırlanma amacı ortaya konmuştur. Literatür özeti bölümünde, konuya temel olan çalışmalar incelenmiştir. Genel bilgiler bölümünde, E' de manifoldlar, Lorentz uzayı ve yan-Riemann manifoldları ile ilgili temel kavramlara yer verilmiştir. Materyal ve metot bölümünde, Rm(k) nın (h - 1) - boyutlu total jeodezik altmanifoldlan ile üretilen n -boyutlu altmanifoldlan ve bunların açılabilir olması hali tanıtılmıştır. Bulgular bölümü çalışmamızın orijinal kısmını meydana getirmektedir. Bu bölümde R*{k) nın {m -l)- boyutlu total jeodezik L altmanifoldlanmn bir geometrik yeri olan m -boyutlu M altmanifoldu ele alınmıştır. Önce L ve M altmanifoldlanmn time-like ya da space-like olmalarına göre M nin A, şekil operatörüne karşılık gelen matrisler elde edilmiş ve M nin H ortalama eğrilik vektörü hesaplanmıştır. Daha sonra M nin minimal olması ve olmaması halinde Rf{k) daki durumu incelenmiştir. Ayrıca Ac matrislerinin aynı zamanda nasıl köşegenleştirilebilir olduğuna ve M nin açılabilir olması halinde Rf(k) uzay formundaki durumuna bakılmıştır. M nin düzlemsel normal konneksiyonuna sahip olması ile sabit eğrilikli olması arasında bağlantılar elde edilmiştir. Anahtar Kelimeler: Lorentz uzayı, Yan-Riemann manifoldu, köşegenleştirilebilirlik, minimallik, açılabilirlik.
Ill ON m - DIMENSIONAL SUBMANIFOLDS OF A SPACE FORM R*(k) m THE MINKOWSKI SPACE IR? ABSTRACT This study consists of five fundamental parts. In introduction part, the aim of this study is presented. In literature abstract part, the main studies related to subject have been examined. In general information part, fundamental concepts about manifolds in E', Lorentz space and semi-Riemannian manifolds have been presented. In material and method part, «-dimensional submanifolds of a space form Rm(k), which are foliated by (77 -l)- dimensional totally geodesic submanifolds of Rm(k) and their developable conditions are introduced. Results part contains the original part of this study. In this part; 77? - dimensional submanifolds M, which are foliated by (pi -l)- dimensional totally geodesic submanifolds L of a space form Rf{k) has been studied. Firstly, matrices corresponding to the shape operator A, of submanifold M have been obtained regarding to submanifolds L and M with time-like or space like and the main curvature vector H of the manifold M has been calculated. Then, in case the manifold Mis minimal or not, its characterization in Rf(k) has been examined. Furthermore, how A, can became simultaneously diagonalizable and the case of M in the Rf{k), when Mis developable, has been examined. The relations between M with flat normal connection and with constant curvature have been obtained. Key Words: Lorentz space, semi-Riemannian manifold, diagonalizable, minimal, developable.
Ill ON m - DIMENSIONAL SUBMANIFOLDS OF A SPACE FORM R*(k) m THE MINKOWSKI SPACE IR? ABSTRACT This study consists of five fundamental parts. In introduction part, the aim of this study is presented. In literature abstract part, the main studies related to subject have been examined. In general information part, fundamental concepts about manifolds in E', Lorentz space and semi-Riemannian manifolds have been presented. In material and method part, «-dimensional submanifolds of a space form Rm(k), which are foliated by (77 -l)- dimensional totally geodesic submanifolds of Rm(k) and their developable conditions are introduced. Results part contains the original part of this study. In this part; 77? - dimensional submanifolds M, which are foliated by (pi -l)- dimensional totally geodesic submanifolds L of a space form Rf{k) has been studied. Firstly, matrices corresponding to the shape operator A, of submanifold M have been obtained regarding to submanifolds L and M with time-like or space like and the main curvature vector H of the manifold M has been calculated. Then, in case the manifold Mis minimal or not, its characterization in Rf(k) has been examined. Furthermore, how A, can became simultaneously diagonalizable and the case of M in the Rf{k), when Mis developable, has been examined. The relations between M with flat normal connection and with constant curvature have been obtained. Key Words: Lorentz space, semi-Riemannian manifold, diagonalizable, minimal, developable.
Description
Tez (doktora) -- Ondokuz Mayıs Üniversitesi, 2000
Libra Kayıt No: 36038
Libra Kayıt No: 36038
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
65
