Publication: Enhanced Enchondroma Detection from X-Ray Images Using Deep Learning: A Step Towards Accurate and Cost-Effective Diagnosis
| dc.authorscopusid | 58922910400 | |
| dc.authorscopusid | 59220473700 | |
| dc.authorscopusid | 36515473000 | |
| dc.authorscopusid | 58922910500 | |
| dc.authorscopusid | 55856886900 | |
| dc.authorscopusid | 56985325700 | |
| dc.authorscopusid | 56690141900 | |
| dc.authorwosid | Öztürk, Mesut/Aac-7512-2021 | |
| dc.authorwosid | Ozcan, Caner/Aag-4168-2019 | |
| dc.authorwosid | Aydin, Ayhan/Aev-0019-2022 | |
| dc.authorwosid | Aydın Şimşek, Şafak/Hlg-6046-2023 | |
| dc.authorwosid | Cengiz, Tolgahan/Otg-9074-2025 | |
| dc.contributor.author | Aydin Simsek, Safak | |
| dc.contributor.author | Aydin, Ayhan | |
| dc.contributor.author | Say, Ferhat | |
| dc.contributor.author | Cengiz, Tolgahan | |
| dc.contributor.author | Ozcan, Caner | |
| dc.contributor.author | Ozturk, Mesut | |
| dc.contributor.author | Ozkan, Korhan | |
| dc.contributor.authorID | Say, Ferhat/0000-0002-8021-0942 | |
| dc.contributor.authorID | Okay, Erhan/0000-0003-2443-2505 | |
| dc.contributor.authorID | Aydin, Ayhan/0000-0001-9127-0951 | |
| dc.contributor.authorID | Cengi̇z, Tolgahan/0000-0003-2363-0198 | |
| dc.contributor.authorID | Aydin Şi̇mşek, Şafak/0000-0003-2250-8043 | |
| dc.contributor.authorID | Ozturk, Mesut/0000-0003-4059-2656 | |
| dc.date.accessioned | 2025-12-11T01:38:46Z | |
| dc.date.issued | 2024 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Aydin Simsek, Safak; Say, Ferhat] Ondokuz Mayis Univ, Fac Med, Dept Orthoped & Traumatol, Samsun, Turkiye; [Aydin, Ayhan] Karabuk Univ, Dept Comp Engn, Karabuk, Turkiye; [Cengiz, Tolgahan] Inebolu State Hosp, Clin Orthoped & Traumatol, Kastamonu, Turkiye; [Ozcan, Caner] Karabuk Univ, Dept Software Engn, Karabuk, Turkiye; [Ozturk, Mesut] Samsun Univ, Fac Med, Dept Radiol, Samsun, Turkiye; [Okay, Erhan] Istanbul Medeniyet Univ Goztepe Educ & Res Hosp, Dept Orthoped & Traumatol, Istanbul, Turkiye; [Ozkan, Korhan] Acibadem Atasehir Hosp, Dept Orthoped & Traumatol, Istanbul, Turkiye | en_US |
| dc.description | Say, Ferhat/0000-0002-8021-0942; Okay, Erhan/0000-0003-2443-2505; Aydin, Ayhan/0000-0001-9127-0951; Cengi̇z, Tolgahan/0000-0003-2363-0198; Aydin Şi̇mşek, Şafak/0000-0003-2250-8043; Ozturk, Mesut/0000-0003-4059-2656 | en_US |
| dc.description.abstract | This study investigates the automated detection of enchondromas, benign cartilage tumors, from x-ray images using deep learning techniques. Enchondromas pose diagnostic challenges due to their potential for malignant transformation and overlapping radiographic features with other conditions. Leveraging a data set comprising 1645 x-ray images from 1173 patients, a deep-learning model implemented with Detectron2 achieved an accuracy of 0.9899 in detecting enchondromas. The study employed rigorous validation processes and compared its findings with the existing literature, highlighting the superior performance of the deep learning approach. Results indicate the potential of machine learning in improving diagnostic accuracy and reducing healthcare costs associated with advanced imaging modalities. The study underscores the significance of early and accurate detection of enchondromas for effective patient management and suggests avenues for further research in musculoskeletal tumor detection. | en_US |
| dc.description.sponsorship | The Scientific and Technological Research Council of Turkey (TUBITAK) [122E636]; Scientific and Technological Research Council of Turkey (TUBITAK) | en_US |
| dc.description.sponsorship | The Scientific and Technological Research Council of Turkey (TUBITAK) supports the study within the scope of 1002-Priority Support-A with the project code 122E636. The executive, researcher, and scholarship holder are the paper's authors. | en_US |
| dc.description.woscitationindex | Science Citation Index Expanded | |
| dc.identifier.doi | 10.1002/jor.25938 | |
| dc.identifier.endpage | 2834 | en_US |
| dc.identifier.issn | 0736-0266 | |
| dc.identifier.issn | 1554-527X | |
| dc.identifier.issue | 12 | en_US |
| dc.identifier.pmid | 39007705 | |
| dc.identifier.scopus | 2-s2.0-85198662480 | |
| dc.identifier.scopusquality | Q1 | |
| dc.identifier.startpage | 2826 | en_US |
| dc.identifier.uri | https://doi.org/10.1002/jor.25938 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12712/45126 | |
| dc.identifier.volume | 42 | en_US |
| dc.identifier.wos | WOS:001353394500009 | |
| dc.identifier.wosquality | Q2 | |
| dc.language.iso | en | en_US |
| dc.publisher | Wiley | en_US |
| dc.relation.ispartof | Journal of Orthopaedic Research | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Deep Learning | en_US |
| dc.subject | Detectron2 | en_US |
| dc.subject | Enchondromas | en_US |
| dc.subject | Machine Learning | en_US |
| dc.subject | X-Ray | en_US |
| dc.title | Enhanced Enchondroma Detection from X-Ray Images Using Deep Learning: A Step Towards Accurate and Cost-Effective Diagnosis | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
