Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.

Publication:
Enhanced Enchondroma Detection from X-Ray Images Using Deep Learning: A Step Towards Accurate and Cost-Effective Diagnosis

dc.authorscopusid58922910400
dc.authorscopusid59220473700
dc.authorscopusid36515473000
dc.authorscopusid58922910500
dc.authorscopusid55856886900
dc.authorscopusid56985325700
dc.authorscopusid56690141900
dc.authorwosidÖztürk, Mesut/Aac-7512-2021
dc.authorwosidOzcan, Caner/Aag-4168-2019
dc.authorwosidAydin, Ayhan/Aev-0019-2022
dc.authorwosidAydın Şimşek, Şafak/Hlg-6046-2023
dc.authorwosidCengiz, Tolgahan/Otg-9074-2025
dc.contributor.authorAydin Simsek, Safak
dc.contributor.authorAydin, Ayhan
dc.contributor.authorSay, Ferhat
dc.contributor.authorCengiz, Tolgahan
dc.contributor.authorOzcan, Caner
dc.contributor.authorOzturk, Mesut
dc.contributor.authorOzkan, Korhan
dc.contributor.authorIDSay, Ferhat/0000-0002-8021-0942
dc.contributor.authorIDOkay, Erhan/0000-0003-2443-2505
dc.contributor.authorIDAydin, Ayhan/0000-0001-9127-0951
dc.contributor.authorIDCengi̇z, Tolgahan/0000-0003-2363-0198
dc.contributor.authorIDAydin Şi̇mşek, Şafak/0000-0003-2250-8043
dc.contributor.authorIDOzturk, Mesut/0000-0003-4059-2656
dc.date.accessioned2025-12-11T01:38:46Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Aydin Simsek, Safak; Say, Ferhat] Ondokuz Mayis Univ, Fac Med, Dept Orthoped & Traumatol, Samsun, Turkiye; [Aydin, Ayhan] Karabuk Univ, Dept Comp Engn, Karabuk, Turkiye; [Cengiz, Tolgahan] Inebolu State Hosp, Clin Orthoped & Traumatol, Kastamonu, Turkiye; [Ozcan, Caner] Karabuk Univ, Dept Software Engn, Karabuk, Turkiye; [Ozturk, Mesut] Samsun Univ, Fac Med, Dept Radiol, Samsun, Turkiye; [Okay, Erhan] Istanbul Medeniyet Univ Goztepe Educ & Res Hosp, Dept Orthoped & Traumatol, Istanbul, Turkiye; [Ozkan, Korhan] Acibadem Atasehir Hosp, Dept Orthoped & Traumatol, Istanbul, Turkiyeen_US
dc.descriptionSay, Ferhat/0000-0002-8021-0942; Okay, Erhan/0000-0003-2443-2505; Aydin, Ayhan/0000-0001-9127-0951; Cengi̇z, Tolgahan/0000-0003-2363-0198; Aydin Şi̇mşek, Şafak/0000-0003-2250-8043; Ozturk, Mesut/0000-0003-4059-2656en_US
dc.description.abstractThis study investigates the automated detection of enchondromas, benign cartilage tumors, from x-ray images using deep learning techniques. Enchondromas pose diagnostic challenges due to their potential for malignant transformation and overlapping radiographic features with other conditions. Leveraging a data set comprising 1645 x-ray images from 1173 patients, a deep-learning model implemented with Detectron2 achieved an accuracy of 0.9899 in detecting enchondromas. The study employed rigorous validation processes and compared its findings with the existing literature, highlighting the superior performance of the deep learning approach. Results indicate the potential of machine learning in improving diagnostic accuracy and reducing healthcare costs associated with advanced imaging modalities. The study underscores the significance of early and accurate detection of enchondromas for effective patient management and suggests avenues for further research in musculoskeletal tumor detection.en_US
dc.description.sponsorshipThe Scientific and Technological Research Council of Turkey (TUBITAK) [122E636]; Scientific and Technological Research Council of Turkey (TUBITAK)en_US
dc.description.sponsorshipThe Scientific and Technological Research Council of Turkey (TUBITAK) supports the study within the scope of 1002-Priority Support-A with the project code 122E636. The executive, researcher, and scholarship holder are the paper's authors.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1002/jor.25938
dc.identifier.endpage2834en_US
dc.identifier.issn0736-0266
dc.identifier.issn1554-527X
dc.identifier.issue12en_US
dc.identifier.pmid39007705
dc.identifier.scopus2-s2.0-85198662480
dc.identifier.scopusqualityQ1
dc.identifier.startpage2826en_US
dc.identifier.urihttps://doi.org/10.1002/jor.25938
dc.identifier.urihttps://hdl.handle.net/20.500.12712/45126
dc.identifier.volume42en_US
dc.identifier.wosWOS:001353394500009
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.ispartofJournal of Orthopaedic Researchen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDeep Learningen_US
dc.subjectDetectron2en_US
dc.subjectEnchondromasen_US
dc.subjectMachine Learningen_US
dc.subjectX-Rayen_US
dc.titleEnhanced Enchondroma Detection from X-Ray Images Using Deep Learning: A Step Towards Accurate and Cost-Effective Diagnosisen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files