Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.

Publication:
Modeling Soil Temperature with Fuzzy Logic and Supervised Learning Methods

dc.authorscopusid55976027400
dc.authorscopusid57194567018
dc.authorscopusid58184153400
dc.authorscopusid56541733100
dc.authorscopusid57197005919
dc.authorwosidKüçüktopcu, Erdem/Aba-5376-2021
dc.authorwosidSiek, Halis/I-8514-2015
dc.authorwosidKüçüktopçu, Erdem/Aba-5376-2021
dc.authorwosidSimsek, Halis/Gnm-6269-2022
dc.authorwosidCemek, Emirhan/Gry-4635-2022
dc.authorwosidCemek, Bilal/Aaz-7757-2020
dc.contributor.authorCemek, Bilal
dc.contributor.authorKulturel, Yunus
dc.contributor.authorCemek, Emirhan
dc.contributor.authorKucuktopcu, Erdem
dc.contributor.authorSimsek, Halis
dc.contributor.authorIDKüçüktopcu, Erdem/0000-0002-8708-2306
dc.contributor.authorIDSiek, Halis/0000-0001-9031-5142
dc.contributor.authorIDCemek, Bilal/0000-0002-0503-6497
dc.contributor.authorIDCemek, Emirhan/0000-0003-0722-6224
dc.date.accessioned2025-12-11T01:31:45Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Cemek, Bilal; Kucuktopcu, Erdem] Ondokuz Mayis Univ, Dept Agr Struct & Irrigat, TR-55139 Samsun, Turkiye; [Kulturel, Yunus] Gaziosmanpasa Univ, Tokat Tech Sci Vocat Sch, Machine Program, TR-60250 Tokat, Turkiye; [Cemek, Emirhan] Istanbul Tech Univ, Dept Civil Engn, Hydraul & Water Resources Engn Program, TR-34469 Istanbul, Turkiye; [Simsek, Halis] Purdue Univ, Dept Agr & Biol Engn, W Lafayette, IN 47907 USAen_US
dc.descriptionKüçüktopcu, Erdem/0000-0002-8708-2306; Siek, Halis/0000-0001-9031-5142; Cemek, Bilal/0000-0002-0503-6497; Cemek, Emirhan/0000-0003-0722-6224;en_US
dc.description.abstractSoil temperature is a critical environmental factor that affects plant development, physiological processes, and overall productivity. This study compares two modeling approaches for predicting soil temperature at various depths: (i) fuzzy logic-based systems, including the Mamdani fuzzy inference system (MFIS) and the adaptive neuro-fuzzy inference system (ANFIS); (ii) supervised machine learning algorithms, such as multilayer perceptron (MLP), support vector regression (SVR), random forest (RF), extreme gradient boosting (XGB), and k-nearest neighbors (KNN), along with multiple Linear regression (MLR) as a statistical benchmark. Soil temperature data were collected from Tokat, T & uuml;rkiye, between 2016 and 2024 at depths of 5, 10, 20, 50, and 100 cm. The dataset was split into training (2016-2021) and testing (2022-2024) periods. Performance was evaluated using the root mean square error (RMSE), the mean absolute error (MAE), and the coefficient of determination (R2). The ANFIS achieved the best prediction accuracy (MAE = 1.46 degrees C, RMSE = 1.89 degrees C, R2 = 0.95), followed by RF, XGB, MLP, KNN, SVR, MLR, and MFIS. This study underscores the potential of integrating machine learning and fuzzy logic techniques for more accurate soil temperature modeling, contributing to precision agriculture and better resource management.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.3390/app15116319
dc.identifier.issn2076-3417
dc.identifier.issue11en_US
dc.identifier.scopus2-s2.0-105007725971
dc.identifier.scopusqualityQ3
dc.identifier.urihttps://doi.org/10.3390/app15116319
dc.identifier.urihttps://hdl.handle.net/20.500.12712/44347
dc.identifier.volume15en_US
dc.identifier.wosWOS:001505758500001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofApplied Sciences-Baselen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFuzzy Logicen_US
dc.subjectMamdanien_US
dc.subjectSugenoen_US
dc.subjectMachine Learningen_US
dc.subjectSoil Temperatureen_US
dc.titleModeling Soil Temperature with Fuzzy Logic and Supervised Learning Methodsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files