Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.

Publication:
A Novel Pi-Style Dendritic Neural Network Based on Kolmogorov-Arnold Representation for Time Series Modeling

dc.authorscopusid57194769905
dc.authorscopusid57742708900
dc.authorwosidSözen, Çağlar/Adk-8792-2022
dc.authorwosidSağlam, Fatih/Aaa-4146-2022
dc.contributor.authorSaglam, Fatih
dc.contributor.authorSozen, Caglar
dc.date.accessioned2025-12-11T00:45:11Z
dc.date.issued2026
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Saglam, Fatih] Ondokuz Mayis Univ, Fac Sci, Dept Stat, TR-55270 Samsun, Turkiye; [Sozen, Caglar] Giresun Univ, Gorele Sch Appl Sci, Dept Finance & Banking, TR-28800 Giresun, Turkiyeen_US
dc.description.abstractTime series forecasting is essential across domains such as energy, finance, and climate, yet conventional statistical and deep learning methods often struggle to balance accuracy, efficiency, and interpretability when modeling complex, nonlinear temporal patterns. This study introduces the Pi-style Dendritic Kolmogorov-Arnold Network (PiDKAN), a novel hybrid neural architecture that integrates the multiplicative structure of Pi-Sigma networks, the localized processing of Dendritic Neural Models, and the univariate function decomposition capability of Kolmogorov-Arnold Networks. By capturing both local and high-order interactions, PiDKAN addresses key challenges in time series modeling. The model was benchmarked against ten established neural networks using eight electricity consumption datasets spanning four years, consistently achieving superior performance in RMSE, MAE, and MAPE metrics. Statistical analyses confirmed the significance of these improvements, demonstrating PiDKAN's strength as a robust, and accurate forecasting solution. These results suggest that PiDKAN offers a promising new direction for interpretable time series models in real-world applications.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1016/j.eswa.2025.129495
dc.identifier.issn0957-4174
dc.identifier.issn1873-6793
dc.identifier.scopus2-s2.0-105014796519
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2025.129495
dc.identifier.urihttps://hdl.handle.net/20.500.12712/38928
dc.identifier.volume297en_US
dc.identifier.wosWOS:001565893800001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofExpert Systems With Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectTime Series Forecastingen_US
dc.subjectKolmogorov-Arnold Networksen_US
dc.subjectDendritic Neural Modelen_US
dc.subjectPi-Sigma Networksen_US
dc.subjectHybrid Neural Networksen_US
dc.titleA Novel Pi-Style Dendritic Neural Network Based on Kolmogorov-Arnold Representation for Time Series Modelingen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files