Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.

Publication:
Land Quality Index for Paddy (Oryza Sativa L.) Cultivation Area Based on Deep Learning Approach Using Geographical Information System and Geostatistical Techniques

dc.authorscopusid25651919200
dc.authorscopusid56868366700
dc.authorscopusid21743556600
dc.authorscopusid16052385200
dc.authorscopusid57212548074
dc.contributor.authorŞenyer, N.
dc.contributor.authorAkay, H.
dc.contributor.authorOdabaş, M.S.
dc.contributor.authorDengiz, O.
dc.contributor.authorSivarajan, S.
dc.date.accessioned2025-12-11T01:52:17Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Şenyer] Nurettin, Department of Software Engineering, Samsun University, Samsun, Samsun, Turkey; [Akay] Hasan, Department of Field Crops, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Odabaş] Mehmet Serhat, Computational Sciences Program, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Dengiz] Orhan, Department of Soil Science and Plant Nutrition, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Sivarajan] Saravanan, Vellore Institute of Technology, Vellore, TN, Indiaen_US
dc.description.abstractTürkiye has ideal ecological conditions for growing rice, and its yield per hectare is often higher than the average worldwide. However, unbalanced fertilization, nutrient deficiency, and irrigation problems negatively affect paddy production when soil characteristics are not considered. The present study was conducted on a 1763-hectare field (652000-659000E-W and 4528000-4536000N-S) in 2019. This study's primary goal was to categorize land quality for rice production using 15 different physicochemical parameters and a GIS (Geographical Information Systems) and deep learning (DL) technique. Using these parameters soil types were classified and regression analysis was performed by DL. Different soil parameters as network outputs used in this study caused different performance levels in models. Therefore, different models were suggested for each network output. The R2 values indicated a respectable level for parameter prediction, and an accuracy of 88% was attained when classifying "class" data. The findings of the study demonstrated that deep learning may be used to forecast soil metrics and distinguish between different land quality classes. Additionally, a field investigation was used to validate the indicated land quality classifications. Using statistical techniques, a substantial positive link between rice yield and land quality classes was discovered. © 2023, Centenary University. All rights reserved.en_US
dc.identifier.doi10.29133/yyutbd.1177796
dc.identifier.endpage90en_US
dc.identifier.issn1308-7576
dc.identifier.issn1308-7584
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85153375495
dc.identifier.scopusqualityQ3
dc.identifier.startpage75en_US
dc.identifier.trdizinid1162750
dc.identifier.urihttps://doi.org/10.29133/yyutbd.1177796
dc.identifier.urihttps://search.trdizin.gov.tr/en/yayin/detay/1162750/land-quality-index-for-paddy-oryza-sativa-l-cultivation-area-based-on-deep-learning-approach-using-geographical-information-system-and-geostatistical-techniques
dc.identifier.urihttps://hdl.handle.net/20.500.12712/47196
dc.identifier.volume33en_US
dc.language.isoenen_US
dc.publisherCentenary Universityen_US
dc.relation.ispartofYuzuncu Yil University Journal of Agricultural Sciencesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDeep Learningen_US
dc.subjectMappingen_US
dc.subjectOryza Sativa Len_US
dc.subjectPaddyen_US
dc.subjectPrecision Agricultureen_US
dc.titleLand Quality Index for Paddy (Oryza Sativa L.) Cultivation Area Based on Deep Learning Approach Using Geographical Information System and Geostatistical Techniquesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files