Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.

Publication:
A Hybrid Forecasting Model Based on Multivariate Fuzzy Time Series and Artificial Neural Networks

Loading...
Thumbnail Image

Date

Journal Title

Journal ISSN

Volume Title

Research Projects

Organizational Units

Journal Issue

Abstract

Fuzzy time series approaches have been recently used for forecasting in many studies [1]. These approaches can be categorized into two subclasses that are univariate and multivariate approaches. It is a fact that many factors can actually affect real time series data. Therefore, using a multivariate fuzzy time series forecasting model can be more reasonable in order to get more accurate forecasts. The most preferred method is using tables of fuzzy relations for determining fuzzy relations in multivariate fuzzy time series approaches in the literature. However, employing this method is a computationally though task. In this study, we propose a new method based on utilizing artificial neural networks in determining fuzzy logic relations and using the formula defined by Jilani and Burney [2] in calculating defuzzyfied forecasts. Hence, it is aimed to produce more accurate forecasts and avoid intense computations. The proposed method is applied to the time series data of the total number of annual car road accidents casualties in Belgium from 1974 to 2004 and a comparison is made between our proposed method and the methods proposed by Jilani and Burney [2] and Lee et al. [3]. © 2012 Bentham Science Publishers. All rights reserved.

Description

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

118

End Page

129

Endorsement

Review

Supplemented By

Referenced By