Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.

Publication:
Fault Identification in Induction Motors with RBF Neural Network Based on Dynamical PCA

dc.authorscopusid22953804000
dc.authorscopusid22433630600
dc.authorscopusid22433319300
dc.contributor.authorKilic, E.
dc.contributor.authorÖzgönenel, O.
dc.contributor.authorÖzdemir, A.E.
dc.date.accessioned2020-06-21T15:24:22Z
dc.date.available2020-06-21T15:24:22Z
dc.date.issued2007
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Kilic] Erdal, Department of Computer Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Özgönenel] Okan, Electrical and Electronics Engineering Department, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Özdemir] Ali Ekber, Department of Computer Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.descriptionIEEE Industry Application Society; IEEE Power Electronics Society; IEEE Power Engineering Society; IEEE Industrial Electronics Societyen_US
dc.description.abstractEarly detection and diagnosis of incipient faults is desirable for on-line condition assessment, product quality assurance and improved efficiency of induction motors running off power supply mains. In the applications of three-phase induction motors in industry, the inner faults may occur in their rotor and stator windings. These kinds of faults will make serious health problems on the motor. This paper presents a new protection scheme for internal short circuit faults occurring with a degree (single or multiple) in three-phase induction motors. The results are compared with traditional outcomes existed from Fast Fourier Transformation (FFT) of the motor currents. The proposed algorithm is simpler and only uses stator currents. There is no need any other sensor knowledge. © 2007 IEEE.en_US
dc.identifier.doi10.1109/IEMDC.2007.382776
dc.identifier.endpage835en_US
dc.identifier.isbn9781424407439
dc.identifier.isbn1424407435
dc.identifier.scopus2-s2.0-35048855523
dc.identifier.startpage830en_US
dc.identifier.urihttps://doi.org/10.1109/IEMDC.2007.382776
dc.identifier.volume1en_US
dc.identifier.wosWOS:000248118800145
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof-- IEEE International Electric Machines and Drives Conference, IEMDC 2007en_US
dc.relation.journalIeee Iemdc 2007: Proceedings of the International Electric Machines and Drives Conference, Vols 1 and 2en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFault Identification (FI)en_US
dc.subjectFFTen_US
dc.subjectInduction Motoren_US
dc.subjectInternal Faultsen_US
dc.subjectPrincipal Component Analysis (PCA)en_US
dc.subjectRadial Basis Functions (RBFs)en_US
dc.titleFault Identification in Induction Motors with RBF Neural Network Based on Dynamical PCAen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files