Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.

Publication:
Machine Learning Techniques in Estimation of Eggplant Crop Evapotranspiration

dc.authorscopusid55976027400
dc.authorscopusid57215381789
dc.authorscopusid57897627900
dc.authorscopusid49664190200
dc.authorscopusid57197005919
dc.authorwosidSimsek, Halis/Gnm-6269-2022
dc.authorwosidCanturk, Aslihan/Jao-0899-2023
dc.authorwosidTaşan, Sevda/Hjz-1498-2023
dc.authorwosidCemek, Bilal/Aaz-7757-2020
dc.contributor.authorCemek, Bilal
dc.contributor.authorTaşan, Sevda
dc.contributor.authorCanturk, Aslihan
dc.contributor.authorTasan, Mehmet
dc.contributor.authorSimsek, Halis
dc.contributor.authorIDTasan, Mehmet/0000-0002-5592-5022
dc.date.accessioned2025-12-11T01:09:53Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Cemek, Bilal; Tasan, Sevda] Ondokuz Mayis Univ, Fac Agr, Dept Agr Struct & Irrigat, Samsun, Turkiye; [Canturk, Aslihan; Tasan, Mehmet] Black Sea Agr Res Inst, Dept Soil & Water Resources, Samsun, Turkiye; [Simsek, Halis] Purdue Univ, Dept Agr & Biol Engn, W Lafayette, IN USAen_US
dc.descriptionTasan, Mehmet/0000-0002-5592-5022;en_US
dc.description.abstractThis study predicted the daily evapotranspiration of eggplant (Solanum melongena L.) under full and deficit irrigation in the Bafra district of Samsun province, Turkey, using machine learning methods. Artificial neural networks (ANNs), deep neural networks (DNN), M5 model tree (M5Tree), random forest (RF), support vector machine (SVM), k-nearest neighbor (kNN), and adaptive boosting were investigated as machine learning approaches. Determination of evapotranspiration in this study consists of three methods: (i) The reference evapotranspiration (ETo) was obtained from the Food and Agriculture Organization-56 Penman-Monteith equation, (ii) the values of evapotranspiration (ETc) calculated by multiplying the reference evapotranspiration by the crop coefficient (K-c), and (iii) the values of evapotranspiration (ETa) measured using soil water balance between successive soil water measurements as the outputs. The model's performance in ETo estimation was higher when minimum and maximum temperature (T-max and T-min), wind speed (u(2)), average relative humidity (RHavg), solar radiation (R-s), and days of the year were used as inputs. The best performance was obtained in the ANN model with a coefficient of determination (R-2) value of 0.984, a mean absolute error (MAE) of 0.098 mm d(-1), a root-mean-square error (RMSE) of 0.153 mm d(-1), and Nash-Sutcliffe efficiency of 0.983. The model's performance in ETc estimation was significantly improved with the addition of leaf area index (LAI) and crop height (h(c)) to the climate parameters (MAE and RMSE values decreased by 22.6 and 23.2%, respectively). The accuracy of ETc estimation for some plant traits (h(c) and LAI) and average temperature (T-avg) was sufficient. The best statistical performance in estimating ETa was obtained by the RF model (T-avg, u(2), RHavg, and R-s) using climate parameters. DNN proved to be the least successful model compared to the other six models in predicting ETo, ETc, and ETa.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkiye (TUBITAK) [114O538]en_US
dc.description.sponsorshipThis work was financially supported by the Scientific and Technological Research Council of Turkiye (TUBITAK) under Grant [Number 114O538].en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1007/s13201-023-01942-1
dc.identifier.issn2190-5487
dc.identifier.issn2190-5495
dc.identifier.issue6en_US
dc.identifier.scopus2-s2.0-85160007849
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1007/s13201-023-01942-1
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41761
dc.identifier.volume13en_US
dc.identifier.wosWOS:000992798900001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherSpringer Heidelbergen_US
dc.relation.ispartofApplied Water Scienceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial Neural Networken_US
dc.subjectMachine Learningen_US
dc.subjectCrop Evapotranspirationen_US
dc.subjectEggplanten_US
dc.subjectSemi-Humid Regionen_US
dc.titleMachine Learning Techniques in Estimation of Eggplant Crop Evapotranspirationen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files