Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.

Publication:
Prediction of Coronary Artery Disease Using Machine Learning Techniques with Iris Analysis

dc.authorscopusid57225107818
dc.authorscopusid16230640200
dc.authorscopusid57190792483
dc.authorwosidÖzbilgin, Ferdi/Aec-3530-2022
dc.authorwosidAydin, Ertan/Hjz-3245-2023
dc.authorwosidKurnaz, Cetin/S-3469-2016
dc.contributor.authorOzbilgin, Ferdi
dc.contributor.authorKurnaz, Cetin
dc.contributor.authorAydin, Ertan
dc.contributor.authorIDKurnaz, Cetin/0000-0003-3436-899X
dc.contributor.authorIDAydın, Ertan/0000-0002-7280-5137
dc.date.accessioned2025-12-11T01:14:10Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Ozbilgin, Ferdi] Giresun Univ, Dept Elect & Elect Engn, TR-28200 Giresun, Turkiye; [Kurnaz, Cetin] Ondokuz Mayis Univ, Dept Elect & Elect Engn, TR-55139 Samsun, Turkiye; [Aydin, Ertan] Giresun Univ, Fac Med, Dept Cardiol, TR-28200 Giresun, Turkiyeen_US
dc.descriptionKurnaz, Cetin/0000-0003-3436-899X; Aydın, Ertan/0000-0002-7280-5137en_US
dc.description.abstractCoronary Artery Disease (CAD) occurs when the coronary vessels become hardened and narrowed, limiting blood flow to the heart muscles. It is the most common type of heart disease and has the highest mortality rate. Early diagnosis of CAD can prevent the disease from progressing and can make treatment easier. Optimal treatment, in addition to the early detection of CAD, can improve the prognosis for these patients. This study proposes a new method for non-invasive diagnosis of CAD using iris images. In this study, iridology, a method of analyzing the iris to diagnose health conditions, was combined with image processing techniques to detect the disease in a total of 198 volunteers, 94 with CAD and 104 without. The iris was transformed into a rectangular format using the integral differential operator and the rubber sheet methods, and the heart region was cropped according to the iris map. Features were extracted using wavelet transform, first-order statistical analysis, a Gray-Level Co-Occurrence Matrix (GLCM), and a Gray Level Run Length Matrix (GLRLM). The model's performance was evaluated based on accuracy, sensitivity, specificity, precision, score, mean, and Area Under the Curve (AUC) metrics. The proposed model has a 93% accuracy rate for predicting CAD using the Support Vector Machine (SVM) classifier. With the proposed method, coronary artery disease can be preliminarily diagnosed by iris analysis without needing electrocardiography, echocardiography, and effort tests. Additionally, the proposed method can be easily used to support telediagnosis applications for coronary artery disease in integrated telemedicine systems.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.3390/diagnostics13061081
dc.identifier.issn2075-4418
dc.identifier.issue6en_US
dc.identifier.pmid36980389
dc.identifier.scopus2-s2.0-85151759140
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.3390/diagnostics13061081
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42225
dc.identifier.volume13en_US
dc.identifier.wosWOS:000955681400001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofDiagnosticsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectIrisen_US
dc.subjectIridologyen_US
dc.subjectCoronary Artery Diseaseen_US
dc.subjectDiagnosisen_US
dc.subjectMachine Learningen_US
dc.titlePrediction of Coronary Artery Disease Using Machine Learning Techniques with Iris Analysisen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files