Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.

Publication:
Log Energy Entropy-Based EEG Classification with Multilayer Neural Networks in Seizure

dc.authorscopusid24460465000
dc.authorscopusid22836208800
dc.authorscopusid7005359382
dc.contributor.authorAydın, S.
dc.contributor.authorSaraoğlu, H.M.
dc.contributor.authorKara, S.
dc.date.accessioned2020-06-21T14:53:46Z
dc.date.available2020-06-21T14:53:46Z
dc.date.issued2009
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Aydın] Serap, Electrical and Electronics Engineering Department, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Saraoğlu] Hamdi Melih, Faculty of Engineering, Dumlupinar Üniversitesi, Kutahya, Turkey; [Kara] S., Biomedical Engineering Institute, Fatih Üniversitesi, Istanbul, Turkeyen_US
dc.description.abstractIn this study, normal EEG series recorded from healthy volunteers and epileptic EEG series recorded from patients within and without seizure are classified by using Multilayer Neural Network (MLNN) architectures with respect to several time domain entropy measures such as Shannon Entropy (ShanEn), Log Energy Entropy (LogEn), and Sample Entropy (Sampen). In tests, the MLNN is performed with several numbers of neurons for both one hidden layer and two hidden layers. The results show that segments in seizure have significantly lower entropy values than normal EEG series. This result indicates an important increase of EEG regularity in epilepsy patients. The LogEn approach, which has not been experienced in EEG classification yet, provides the most reliable features into the EEG classification with very low absolute error as 0.01. In particular, the MLNN can be proposed to distinguish the seizure activity from the seizure-free epileptic series where the LogEn values are considered as signal features that characterize the degree of EEG complexity. The highest classification accuracy is obtained for one hidden layer architecture. © 2009 Biomedical Engineering Society.en_US
dc.identifier.doi10.1007/s10439-009-9795-x
dc.identifier.endpage2630en_US
dc.identifier.isbn0080293948
dc.identifier.isbn0080323847
dc.identifier.issn0090-6964
dc.identifier.issn1573-9686
dc.identifier.issue12en_US
dc.identifier.pmid19757057
dc.identifier.scopus2-s2.0-70450210788
dc.identifier.scopusqualityQ1
dc.identifier.startpage2626en_US
dc.identifier.urihttps://doi.org/10.1007/s10439-009-9795-x
dc.identifier.volume37en_US
dc.identifier.wosWOS:000272014900018
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofAnnals of Biomedical Engineeringen_US
dc.relation.journalAnnals of Biomedical Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEEG Classificationen_US
dc.subjectLog Energy Entropyen_US
dc.subjectNeural Networken_US
dc.subjectSeizureen_US
dc.titleLog Energy Entropy-Based EEG Classification with Multilayer Neural Networks in Seizureen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files