Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.

Publication:
Efficacy of Native Entomopathogenic Fungus, Isaria fumosorosea, Against Bark and Ambrosia Beetles, Anisandrus Dispar Fabricius and Xylosandrus Germanus Blandford (Coleoptera: Curculionidae: Scolytinae)

Research Projects

Organizational Units

Journal Issue

Abstract

The efficacy of the native entomopathogenic fungus, Isaria fumosorosea TR-78-3, was evaluated against females of the bark and ambrosia beetles, Anisandrus dispar Fabricius and Xylosandrus germanus Blandford (Coleoptera: Curculionidae: Scolytinae), under laboratory conditions by two different methods as direct and indirect treatments. In the first method, conidial suspensions (1 × 106 and 1 × 108 conidia ml−1) of the fungus were directly applied to the beetles in Petri dishes (2 ml per dish), using a Potter spray tower. In the second method, the same conidial suspensions were applied on a sterile hazelnut branch placed in the Petri dishes. The LT<inf>50</inf> and LT<inf>90</inf> values of 1 × 108 conidia ml−1 were 4.78 and 5.94/days, for A. dispar in the direct application method, while they were 4.76 and 6.49/days in the branch application method. Similarly, LT<inf>50</inf> and LT<inf>90</inf> values of 1 × 108 conidia ml−1 for X. germanus were 4.18 and 5.62/days, and 5.11 and 7.89/days, for the direct and branch application methods, respectively. The efficiency of 1 × 106 conidia ml−1 was lower than that of 1 × 108 against the beetles in both application methods. This study indicates that I. fumosorosea TR-78-3 had a significant potential as a biological control agent against A. dispar and X. germanus. Further studies are necessary to evaluate the efficacy of the isolate on the pests under field conditions. © The Author(s).

Description

Citation

WoS Q

Q1

Scopus Q

Q2

Source

Egyptian Journal of Biological Pest Control

Volume

28

Issue

1

Start Page

1

End Page

6

Endorsement

Review

Supplemented By

Referenced By