Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.

Publication:
Improved Quick Artificial Bee Colony (IQABC) Algorithm for Global Optimization

dc.authorscopusid56294787600
dc.authorscopusid56780136800
dc.authorscopusid6701575189
dc.contributor.authorAslan, Selcuk
dc.contributor.authorBadem, H.
dc.contributor.authorKaraboga, D.
dc.date.accessioned2020-06-21T12:19:49Z
dc.date.available2020-06-21T12:19:49Z
dc.date.issued2019
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Aslan] Selcuk, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Badem] Hasan, Kahramanmaras Sütçü Imam Üniversitesi, Kahramanmaras, Kahramanmaras, Turkey; [Karaboga] Dervis, Erciyes Üniversitesi, Kayseri, Kayseri, Turkeyen_US
dc.description.abstractArtificial bee colony (ABC) algorithm inspired by the complex behaviors of honey bees in foraging is one of the most significant swarm intelligence-based meta-heuristics and has been successfully applied to a number of numerical and combinatorial optimization problems. In this study, for increasing the early convergence performance of the ABC algorithm while protecting the qualities of the final solutions, a new exploitation mechanism from the best food source that is managed by the number of evaluations is described and its efficiency on both employed and onlooker bee phases is analyzed. The results of the experimental studies obtained from a set of benchmark problems showed that the ABC algorithm with the proposed method performs significantly better than the standard implementation of ABC algorithm and its other variants in terms of convergence speed and solution quality especially for the difficult problems that should be solved before completion of the relatively small number of fitness evaluations. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.en_US
dc.identifier.doi10.1007/s00500-019-03858-y
dc.identifier.endpage13182en_US
dc.identifier.issn1432-7643
dc.identifier.issn1433-7479
dc.identifier.issue24en_US
dc.identifier.scopus2-s2.0-85065188969
dc.identifier.scopusqualityQ1
dc.identifier.startpage13161en_US
dc.identifier.urihttps://doi.org/10.1007/s00500-019-03858-y
dc.identifier.volume23en_US
dc.identifier.wosWOS:000494799600017
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherSpringer Verlag service@springer.deen_US
dc.relation.ispartofSoft Computingen_US
dc.relation.journalSoft Computingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Bee Colonyen_US
dc.subjectConvergence Speeden_US
dc.subjectSwarm Intelligenceen_US
dc.titleImproved Quick Artificial Bee Colony (IQABC) Algorithm for Global Optimizationen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files