Publication: Improved Quick Artificial Bee Colony (IQABC) Algorithm for Global Optimization
| dc.authorscopusid | 56294787600 | |
| dc.authorscopusid | 56780136800 | |
| dc.authorscopusid | 6701575189 | |
| dc.contributor.author | Aslan, Selcuk | |
| dc.contributor.author | Badem, H. | |
| dc.contributor.author | Karaboga, D. | |
| dc.date.accessioned | 2020-06-21T12:19:49Z | |
| dc.date.available | 2020-06-21T12:19:49Z | |
| dc.date.issued | 2019 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Aslan] Selcuk, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Badem] Hasan, Kahramanmaras Sütçü Imam Üniversitesi, Kahramanmaras, Kahramanmaras, Turkey; [Karaboga] Dervis, Erciyes Üniversitesi, Kayseri, Kayseri, Turkey | en_US |
| dc.description.abstract | Artificial bee colony (ABC) algorithm inspired by the complex behaviors of honey bees in foraging is one of the most significant swarm intelligence-based meta-heuristics and has been successfully applied to a number of numerical and combinatorial optimization problems. In this study, for increasing the early convergence performance of the ABC algorithm while protecting the qualities of the final solutions, a new exploitation mechanism from the best food source that is managed by the number of evaluations is described and its efficiency on both employed and onlooker bee phases is analyzed. The results of the experimental studies obtained from a set of benchmark problems showed that the ABC algorithm with the proposed method performs significantly better than the standard implementation of ABC algorithm and its other variants in terms of convergence speed and solution quality especially for the difficult problems that should be solved before completion of the relatively small number of fitness evaluations. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature. | en_US |
| dc.identifier.doi | 10.1007/s00500-019-03858-y | |
| dc.identifier.endpage | 13182 | en_US |
| dc.identifier.issn | 1432-7643 | |
| dc.identifier.issn | 1433-7479 | |
| dc.identifier.issue | 24 | en_US |
| dc.identifier.scopus | 2-s2.0-85065188969 | |
| dc.identifier.scopusquality | Q1 | |
| dc.identifier.startpage | 13161 | en_US |
| dc.identifier.uri | https://doi.org/10.1007/s00500-019-03858-y | |
| dc.identifier.volume | 23 | en_US |
| dc.identifier.wos | WOS:000494799600017 | |
| dc.identifier.wosquality | Q3 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer Verlag service@springer.de | en_US |
| dc.relation.ispartof | Soft Computing | en_US |
| dc.relation.journal | Soft Computing | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Artificial Bee Colony | en_US |
| dc.subject | Convergence Speed | en_US |
| dc.subject | Swarm Intelligence | en_US |
| dc.title | Improved Quick Artificial Bee Colony (IQABC) Algorithm for Global Optimization | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
