Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.

Publication:
Development of a Fuzzy Exponentially Weighted Moving Average Control Chart With an α-Level Cut for Monitoring a Production Process

dc.authorscopusid57219896397
dc.authorscopusid6506681376
dc.authorscopusid57146825100
dc.contributor.authorGoztok, Kader Kaplan
dc.contributor.authorUcurum, Metin
dc.contributor.authorOzdemir, Akin
dc.contributor.authorIDÖzdemir, Akın/0000-0002-1716-6694
dc.date.accessioned2025-12-11T01:07:50Z
dc.date.issued2021
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Goztok, Kader Kaplan] Bayburt Univ, Inst Nat Sci, TR-69000 Bayburt, Turkey; [Ucurum, Metin] Bayburt Univ, Dept Ind Engn, TR-69000 Bayburt, Turkey; [Ozdemir, Akin] Ondokuz Mayis Univ, Dept Ind Engn, TR-55139 Samsun, Turkeyen_US
dc.descriptionÖzdemir, Akın/0000-0002-1716-6694en_US
dc.description.abstractStatistical quality control is a useful approach that applies to statistical techniques for monitoring a production system. These charts are effective to monitor the process under certain conditions. On the other hand, the fuzzy set theory is an appropriate tool to deal with an uncertain situation. This paper is fourfold. First of all, triangular fuzzy numbers with an alpha-level cut technique are used for each sample. The alpha-level cut technique is sensitive to satisfy the process requirement. Second, a fuzzy exponentially weighted moving average (FEWMA) control chart is proposed with the alpha-level cut technique. The proposed FEWMA detects small shifts under uncertain situations while using a unity technique for samples. Third, the fuzzy target-focused process capability index (FCpm) index is proposed to measure the fuzzy process performance. Then, a case study is presented to monitor a pumice block plant using the FEWMA control chart with the alpha-level cut and measure the process performance with the FCpm index. Comparative studies are also presented. By using the proposed FEWMA control chart with the alpha-level cut, the accuracy and the flexibility of control specification limits are reported for the case study.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1007/s13369-020-05176-0
dc.identifier.endpage1924en_US
dc.identifier.issn2193-567X
dc.identifier.issn2191-4281
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85098932116
dc.identifier.scopusqualityQ1
dc.identifier.startpage1911en_US
dc.identifier.urihttps://doi.org/10.1007/s13369-020-05176-0
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41459
dc.identifier.volume46en_US
dc.identifier.wosWOS:000605157700010
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherSpringer Heidelbergen_US
dc.relation.ispartofArabian Journal for Science and Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFuzzy EWMAen_US
dc.subject&#945en_US
dc.subject-Cuten_US
dc.subjectProcess Capability Indexen_US
dc.subjectQuality Controlen_US
dc.subjectProduction Processen_US
dc.titleDevelopment of a Fuzzy Exponentially Weighted Moving Average Control Chart With an α-Level Cut for Monitoring a Production Processen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files