Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.

Publication:
Geometric Approaches to Establish the Fundamentals of Lorentz Spaces R3 2 and R 2 1

dc.authorscopusid59474009500
dc.authorscopusid59474859300
dc.contributor.authorSenocak, Sevilay Coruh
dc.contributor.authorYuce, Samsun S. A. L. I. M.
dc.date.accessioned2025-12-11T00:33:31Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Senocak, Sevilay Coruh] Ondokuz Mayis Univ, Fac Sci, Dept Math, TR-55030 Samsun, Turkiye; [Yuce, Samsun S. A. L. I. M.] Yildiz Tech Univ, Fac Arts & Sci, Dept Math, TR-34220 Istanbul, Turkiyeen_US
dc.description.abstractThe aim of this paper is to investigate the orthogonality of vectors to each other and the Gram-Schmidt method in the Minkowski space R-2 (3 ). Hyperbolic cosine formulas are given for all triangle types in the Minkowski plane R (2)( 1). Moreover, the Pedoe inequality is explained for each type of triangle with the help of hyperbolic cosine formulas. Thus, the Pedoe inequality allowed us to establish a connection between two similar triangles in the Minkowski plane. In the continuation of the study, the rotation matrix that provides both point and axis rotation in the Minkowski plane is obtained by using the Lorentz matrix multiplication. Also, it is stated to be an orthogonal matrix. Moreover, the orthogonal projection formulas on the spacelike and timelike lines are given in the Minkowski plane. In addition, the distances of any point from the spacelike or timelike line are formulated.en_US
dc.description.woscitationindexEmerging Sources Citation Index
dc.identifier.doi10.21136/MB.2024.0111-23
dc.identifier.endpage567en_US
dc.identifier.issn0862-7959
dc.identifier.issn2464-7136
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-85212241029
dc.identifier.scopusqualityQ3
dc.identifier.startpage549en_US
dc.identifier.urihttps://doi.org/10.21136/MB.2024.0111-23
dc.identifier.urihttps://hdl.handle.net/20.500.12712/37412
dc.identifier.volume149en_US
dc.identifier.wosWOS:001379519600006
dc.language.isoenen_US
dc.publisherInst Mathematics, As Cren_US
dc.relation.ispartofMathematica Bohemicaen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGram-Schmidt Methoden_US
dc.subjectLorentz Triangleen_US
dc.subjectHyperbolic Cosine Formulasen_US
dc.subjectPedoe Inequalityen_US
dc.subjectLorentz Matrix Multiplicationen_US
dc.subjectOrthogonal Projectionen_US
dc.titleGeometric Approaches to Establish the Fundamentals of Lorentz Spaces R3 2 and R 2 1en_US
dc.typeArticleen_US
dspace.entity.typePublication

Files