Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.

Publication:
Optimizing Boride Coating Thickness on Steel Surfaces Through Machine Learning: Development, Validation, and Experimental Insights

dc.authorscopusid56487254400
dc.authorscopusid56589621700
dc.authorscopusid43261041200
dc.authorscopusid59676337700
dc.authorscopusid56009300300
dc.authorwosidDemirci, Sercan/W-3371-2017
dc.authorwosidSahin, Durmus/Aaj-7961-2020
dc.authorwosidTuncay, Mehmet Masum/Aaa-1863-2019
dc.authorwosidDemirci, Sercan/Acg-4553-2022
dc.contributor.authorDemirci, Selim
dc.contributor.authorSahin, Durmus Ozkan
dc.contributor.authorDemirci, Sercan
dc.contributor.authorGumus, Armagan
dc.contributor.authorTuncay, Mehmet Masum
dc.contributor.authorIDŞahin, Durmuş Özkan/0000-0002-0831-7825
dc.contributor.authorIDDemirci, Sercan/0000-0001-6739-7653
dc.contributor.authorIDGümüş, Armağan/0009-0002-9364-8182
dc.contributor.authorIDDemirci, Selim/0000-0003-3482-7957
dc.contributor.authorIDTünçay, Mehmet Masum/0000-0002-1624-5454
dc.date.accessioned2025-12-11T01:36:52Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Demirci, Selim; Tuncay, Mehmet Masum] Marmara Univ, Fac Engn, Dept Met & Mat Engn, TR-34854 Istanbul, Turkiye; [Sahin, Durmus Ozkan; Demirci, Sercan] Ondokuz Mayis Univ, Fac Engn, Dept Comp Engn, TR-55139 Samsun, Turkiye; [Gumus, Armagan] Ondokuz Mayis Univ, Fac Engn, Dept Met & Mat Engn, TR-55139 Samsun, Turkiyeen_US
dc.descriptionŞahin, Durmuş Özkan/0000-0002-0831-7825; Demirci, Sercan/0000-0001-6739-7653; Gümüş, Armağan/0009-0002-9364-8182; Demirci, Selim/0000-0003-3482-7957; Tünçay, Mehmet Masum/0000-0002-1624-5454en_US
dc.description.abstractIn this study, a comprehensive machine learning (ML) model was developed to predict and optimize boride coating thickness on steel surfaces based on boriding parameters such as temperature, time, boriding media, method, and alloy composition. In a dataset of 375 published experimental results, 19 features were applied as inputs to predict the boride layer thickness in various steel alloys. ML algorithms were evaluated using performance metrics like Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R2. Among the ML algorithms tested, XGBoost exhibited the highest accuracy. XGBoost achieved an R2 of 0.9152, RMSE of 29.57, and MAE of 18.44. Incorporating feature selection and categorical variables enhanced model precision. Additionally, a deep neural network (DNN) architecture demonstrated robust predictive performance, achieving an R2 of 0.93. Experimental validation was conducted using 316L stainless steel (SS), borided at 900 degrees C and 950 degrees C for 2 h and 4 h. The DNN model effectively predicted the boride thickness under these conditions, aligning closely with the observed values and confirming the models' reliability. The findings underscore the potential of ML to optimize boriding processes, offering valuable insights into the relationships between boriding parameters and coating outcomes, thereby advancing surface modification technologies.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.3390/app15052540
dc.identifier.issn2076-3417
dc.identifier.issue5en_US
dc.identifier.scopus2-s2.0-86000529983
dc.identifier.scopusqualityQ3
dc.identifier.urihttps://doi.org/10.3390/app15052540
dc.identifier.urihttps://hdl.handle.net/20.500.12712/44882
dc.identifier.volume15en_US
dc.identifier.wosWOS:001442683500001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofApplied Sciences-Baselen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSteelsen_US
dc.subjectBoridingen_US
dc.subjectThickness Predictionen_US
dc.subjectMachine Learningen_US
dc.subjectXGBoosten_US
dc.subjectDeep Neural Networken_US
dc.titleOptimizing Boride Coating Thickness on Steel Surfaces Through Machine Learning: Development, Validation, and Experimental Insightsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files