Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.

Publication:
Jackknife Kibria-Lukman Estimator for the Beta Regression Model

Loading...
Thumbnail Image

Date

Journal Title

Journal ISSN

Volume Title

Research Projects

Organizational Units

Journal Issue

Abstract

The beta regression model is a flexible model, which widely used when the dependent variable is in ratios and percentages in the range of (0.1). The coefficients of the beta regression model are estimated using the maximum likelihood method. In cases where there is a multicollinearity problem, the use of maximum likelihood (ML) leads to problems such as inconsistent parameter estimates and inflated variance.In the presence of multicollinearity, the use of maximum likelihood (ML) leads to problems such as inconsistent parameter estimates and inflated variance. In this study, KL estimator and its jackknifed version are proposed to reduce the effects of multicollinearity in the beta regression model. The performance of the proposed jackknifed KL beta regression estimator is compared with ridge, Liu and KL estimators through simulation studies and real data applications. The results show that the proposed estimators mostly outperform ML, ridge, Liu and KL estimators.

Description

Citation

Source

Communications in Statistics-Theory and Methods

Volume

53

Issue

21

Start Page

7789

End Page

7805

Endorsement

Review

Supplemented By

Referenced By