Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.

Publication:
An Extensive Text Mining Study for the Turkish Language: Author Recognition, Sentiment Analysis, and Text Classification

dc.authorscopusid56589621700
dc.authorscopusid22953804000
dc.contributor.authorŞahin, D.O.
dc.contributor.authorKilic, E.
dc.date.accessioned2025-12-11T00:29:21Z
dc.date.issued2022
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Şahin] Durmuş Ozkan, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Kilic] Erdal, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractIn this study, the authors give both theoretical and experimental information about text mining, which is one of the natural language processing topics. Three different text mining problems such as news classification, sentiment analysis, and author recognition are discussed for Turkish. They aim to reduce the running time and increase the performance of machine learning algorithms. Four different machine learning algorithms and two different feature selection metrics are used to solve these text classification problems. Classification algorithms are random forest (RF), logistic regression (LR), naive bayes (NB), and sequential minimal optimization (SMO). Chi-square and information gain metrics are used as the feature selection method. The highest classification performance achieved in this study is 0.895 according to the F-measure metric. This result is obtained by using the SMO classifier and information gain metric for news classification. This study is important in terms of comparing the performances of classification algorithms and feature selection methods. © 2022 by IGI Global. All rights reserved.en_US
dc.identifier.doi10.4018/978-1-6684-6303-1.ch037
dc.identifier.endpage722en_US
dc.identifier.isbn9781668463048
dc.identifier.isbn9781668463031
dc.identifier.scopus2-s2.0-105013946169
dc.identifier.startpage690en_US
dc.identifier.urihttps://doi.org/10.4018/978-1-6684-6303-1.ch037
dc.identifier.urihttps://hdl.handle.net/20.500.12712/36705
dc.language.isoenen_US
dc.publisherIGI Globalen_US
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleAn Extensive Text Mining Study for the Turkish Language: Author Recognition, Sentiment Analysis, and Text Classificationen_US
dc.typeBook Parten_US
dspace.entity.typePublication

Files