Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.

Publication:
Prediction of the Effect of Load Resistance and Heat Input on the Performance of Thermoelectric Generator Using Numerical and Artificial Neural Network Models

dc.authorscopusid57223318793
dc.authorscopusid55320607500
dc.authorscopusid57191406398
dc.authorwosidKaleli, Aliriza/Aae-7921-2019
dc.authorwosidSungur, Bilal/Hkn-6716-2023
dc.contributor.authorOzbektas, Seyda
dc.contributor.authorKaleli, Aliriza
dc.contributor.authorSungur, Bilal
dc.contributor.authorIDÖzbektaş, Seyda/0000-0001-7399-733X
dc.date.accessioned2025-12-11T01:07:32Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Ozbektas, Seyda] Ondokuz Mayis Univ, Dept Mech Engn, Samsun, Turkiye; [Kaleli, Aliriza] Ondokuz Mayis Univ, Dept Elect & Elect Engn, Samsun, Turkiye; [Sungur, Bilal] Samsun Univ, Dept Mech Engn, Samsun, Turkiyeen_US
dc.descriptionÖzbektaş, Seyda/0000-0001-7399-733X;en_US
dc.description.abstractThe load resistance in the thermoelectric generators (TEGs) is crucial for optimizing power output, and managing load resistances and operating conditions are integral elements of TEG system design. In this context, it is very important to predict the performance of TEGs at variable operating conditions. This research addresses an important problem in TEG by predicting the effects of load resistance and heat input on performance using both numerical and ANN models. The three-dimensional finite volume methods applied by employing ANSYS software, and the results were compared with experimental and ANN results in terms of voltage, current, power output and efficiency. In case of ambient temperature values of 17 degrees C, the average absolute errors of ANN and numerical model were calculated as 2.09 % and 4.22 % for voltage output, 0.79 % and 7.73 % for current output, 5.35 % and 12.09 % for power output, 4.14 % and 12.09 % for efficiency, respectively. As a result, it was observed that the ANN model gives better results compared to the numerical model. The highest power output was obtained at load resistance of 5.4 ohm and hot surface temperature of 150 degrees C, with the value of 0.827 W experimentally, 0.905 W numerically, and 0.824 W with ANN models. Besides, to evaluate the effect of ambient temperature, two additional temperatures (10 degrees C and 25 degrees C) were tested and it was found that decreasing the ambient temperature increased the TEG performance. The results showed that significant improvements on power and efficiency performance of the TEG can be achieved with optimised operating conditions.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1016/j.applthermaleng.2024.123417
dc.identifier.issn1359-4311
dc.identifier.issn1873-5606
dc.identifier.scopus2-s2.0-85193515678
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.applthermaleng.2024.123417
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41445
dc.identifier.volume249en_US
dc.identifier.wosWOS:001290901000001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofApplied Thermal Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectThermoelectric Generatoren_US
dc.subjectLoad Resistanceen_US
dc.subjectNumerical Modellingen_US
dc.subjectArtificial Neural Networken_US
dc.subjectHeat Transferen_US
dc.titlePrediction of the Effect of Load Resistance and Heat Input on the Performance of Thermoelectric Generator Using Numerical and Artificial Neural Network Modelsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files