Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.

Publication:
Assessing Climate Change Impacts on Cropland and Greenhouse Gas Emissions Using Remote Sensing and Machine Learning

dc.authorscopusid59134885800
dc.authorscopusid57198791430
dc.authorwosidUyar, Azize/Aad-1798-2022
dc.authorwosidUyar, Nehir/Okr-5835-2025
dc.contributor.authorUyar, Nehir
dc.contributor.authorUyar, Azize
dc.contributor.authorIDUyar, Nehir/0000-0003-3358-3145
dc.date.accessioned2025-12-11T01:10:51Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Uyar, Nehir] Zonguldak Bulent Ecevit Univ, Zonguldak Vocat Sch, Dept Architecture & Urban Planning, TR-67600 Zonguldak, Turkiye; [Uyar, Azize] Ondokuz Mayis Univ, Engn Fac, Dept Geomat Engn, TR-55200 Samsun, Turkiyeen_US
dc.descriptionUyar, Nehir/0000-0003-3358-3145;en_US
dc.description.abstractThis study investigated the impact of grassland and cropland expansion on carbon (C) and nitrous oxide (N2O) emissions using remote sensing data and machine learning models. The research focused on agricultural land-use changes in South Sumatra from 1992 to 2018, utilizing Landsat satellite imagery and Google Earth Engine (GEE) for spatial and temporal analysis. Machine learning algorithms, including gradient boosting trees (GBT), random forest (RF), support vector machines (SVM), and classification and regression trees (CART), were employed to estimate greenhouse gas emissions based on multiple environmental parameters. These parameters include enhanced vegetation index (EVI), land surface temperature (LST), normalized difference vegetation index (NDVI), albedo, elevation, humidity, population density, precipitation, soil moisture, and wind speed. The results revealed a strong correlation between agricultural expansion and increased C and N2O emissions, with RF and GBT models demonstrating superior predictive accuracy. Specifically, GBT and RF achieved the highest R2 value (0.71, 0.59) and the lowest error metrics in modeling emissions, whereas SVM performed poorly across all cases. The study highlights the effectiveness of machine learning in quantifying emission dynamics and underscores the necessity of sustainable land management strategies to mitigate greenhouse gas emissions. By integrating remote sensing and data-driven methodologies, this research contributes to climate change mitigation policies and precision agriculture strategies aimed at balancing food security and environmental sustainability.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.3390/atmos16040418
dc.identifier.issn2073-4433
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-105003568309
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.3390/atmos16040418
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41896
dc.identifier.volume16en_US
dc.identifier.wosWOS:001474734100001
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofAtmosphereen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectRemote Sensingen_US
dc.subjectMachine Learningen_US
dc.subjectGreenhouse Gas Emissionsen_US
dc.subjectAgricultural Land Useen_US
dc.subjectCarbon Emissionsen_US
dc.titleAssessing Climate Change Impacts on Cropland and Greenhouse Gas Emissions Using Remote Sensing and Machine Learningen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files