Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.

Publication:
Optimal Estimation Example the Dynamic Parameters from Ambient Vibration for Modal Identification

dc.authorscopusid55621227800
dc.authorscopusid57213413810
dc.authorscopusid55620217700
dc.authorscopusid57213413796
dc.contributor.authorKasimzade, A.A.
dc.contributor.authorHaciyev, M.
dc.contributor.authorTuhta, Sertac
dc.contributor.authorAtmaca, G.
dc.date.accessioned2020-06-21T09:43:31Z
dc.date.available2020-06-21T09:43:31Z
dc.date.issued2018
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Kasimzade] Azer Arastun, Department of Civil Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Haciyev] Muxlis, Department of Civil Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Tuhta] Sertaç, Department of Civil Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Atmaca] Gencay, Department of Civil Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractA novel approach of system characteristic matrix's correction in modal identification from ambient vibration is presented. As a result of this approach, actual system characteristic matrices are determined more accurately with minimum error. It is reflected on to updating system parameters more reliable. In first approximation, actual system characteristic matrices determined by singular value decomposition of block Hankel matrix, which build from the response correlation matrix. In second approximation, to make the system characteristic matrices optimal definite, for black-box modeling the input-output relation of the system used Kalman theory. Covariance of the nonmeasurable process noise and measurement noise matrixes are contained in Riccati equation are determined by expressing Hankel matrix's multiplicities from eigensolution of the system state matrix obtained in previous iteration. Another word process and measurement noises covariance matrixes indirectly is constructed only from measured output data. These iterations are repeated until satisfying estimated error. As a result of these iterations, actual system characteristic matrices are determined more accurately with minimum error. Then, from determined system characteristic, matrices are extracted system modal parameters. These system modal parameters are used for the system modal updating for which direct and iterative methods are applied. Supporting to this algorithm realized code maybe interfaced with finite element codes. © Springer International Publishing AG.en_US
dc.identifier.doi10.1007/978-3-319-93157-9_10
dc.identifier.endpage246en_US
dc.identifier.isbn9783319931562
dc.identifier.isbn9783319931579
dc.identifier.scopus2-s2.0-85077784871
dc.identifier.startpage233en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-319-93157-9_10
dc.language.isoenen_US
dc.publisherSpringer International Publishingen_US
dc.relation.journalSeismic Isolation, Structural Health Monitoring, and Performance Based Seismic Design in Earthquake Engineering: Recent Developmentsen_US
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAmbient Vibrationen_US
dc.subjectKalman Filteren_US
dc.subjectStructural Parametersen_US
dc.subjectSystem Identificationen_US
dc.titleOptimal Estimation Example the Dynamic Parameters from Ambient Vibration for Modal Identificationen_US
dc.typeBook Parten_US
dspace.entity.typePublication

Files