Publication: A Novel Throughput Mapping Method for DC-HSDPA Systems Based on ANN
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
In order to improve support for higher data rates, third-generation partnership project (3GPP) introduced dual-carrier high-speed downlink packet access (DC-HSDPA), which reaches up to 42-Mbps throughput with the use of two adjacent 5-MHz carriers in Release-8. Defining the dependence of throughput on prevailing channel parameters is crucial because a frequency-selective channel limits achieving these data rates. For this reason, DC-HSDPA throughput real field measurements were taken in different propagation environments by using the “TEMS Investigation” program. The evaluation of the measurements showed that one-parameter linear mapping methods, such as signal-to-interference ratio and channel quality indicator, are insufficient for characterizing user throughput. Therefore, this study will propose a novel mapping method with more than one variable. Although multiple linear regression gives a better normalized root-mean-square error, results have shown that frequently used artificial neural network-based mapping methods—such as those for adaptive network-based fuzzy inference system, multilayer perceptron, and generalized regression neural network (GRNN)—yield improved accuracy. From among these, user throughput can be best estimated with the use of GRNN for a commercial DC-HSDPA system, with approximately 93.3 % precision. The GRNN structure allows system designers to update system parameters to maximize user throughput. © 2015, The Natural Computing Applications Forum.
Description
Citation
WoS Q
Scopus Q
Q1
Source
Neural Computing and Applications
Volume
28
Issue
2
Start Page
265
End Page
274
