Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.

Publication:
A Novel Throughput Mapping Method for DC-HSDPA Systems Based on ANN

Loading...
Thumbnail Image

Date

Journal Title

Journal ISSN

Volume Title

Research Projects

Organizational Units

Journal Issue

Abstract

In order to improve support for higher data rates, third-generation partnership project (3GPP) introduced dual-carrier high-speed downlink packet access (DC-HSDPA), which reaches up to 42-Mbps throughput with the use of two adjacent 5-MHz carriers in Release-8. Defining the dependence of throughput on prevailing channel parameters is crucial because a frequency-selective channel limits achieving these data rates. For this reason, DC-HSDPA throughput real field measurements were taken in different propagation environments by using the “TEMS Investigation” program. The evaluation of the measurements showed that one-parameter linear mapping methods, such as signal-to-interference ratio and channel quality indicator, are insufficient for characterizing user throughput. Therefore, this study will propose a novel mapping method with more than one variable. Although multiple linear regression gives a better normalized root-mean-square error, results have shown that frequently used artificial neural network-based mapping methods—such as those for adaptive network-based fuzzy inference system, multilayer perceptron, and generalized regression neural network (GRNN)—yield improved accuracy. From among these, user throughput can be best estimated with the use of GRNN for a commercial DC-HSDPA system, with approximately 93.3 % precision. The GRNN structure allows system designers to update system parameters to maximize user throughput. © 2015, The Natural Computing Applications Forum.

Description

Citation

WoS Q

Scopus Q

Q1

Source

Neural Computing and Applications

Volume

28

Issue

2

Start Page

265

End Page

274

Endorsement

Review

Supplemented By

Referenced By