Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.

Publication:
A Novel Throughput Mapping Method for DC-HSDPA Systems Based on ANN

dc.authorscopusid16230640200
dc.authorscopusid43261063600
dc.authorscopusid55807311000
dc.contributor.authorKurnaz, C.
dc.contributor.authorKorunur Engiz, B.K.
dc.contributor.authorEsenalp, M.
dc.date.accessioned2020-06-21T13:26:45Z
dc.date.available2020-06-21T13:26:45Z
dc.date.issued2017
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Kurnaz] Çetin, Department of Electrical and Electronic Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Korunur Engiz] Begüm, Fatsa Faculty of Marine Sciences, Ordu Üniversitesi, Ordu, Turkey; [Esenalp] Murat Oguz, Turkcell Communications and Technology Company, Turkeyen_US
dc.description.abstractIn order to improve support for higher data rates, third-generation partnership project (3GPP) introduced dual-carrier high-speed downlink packet access (DC-HSDPA), which reaches up to 42-Mbps throughput with the use of two adjacent 5-MHz carriers in Release-8. Defining the dependence of throughput on prevailing channel parameters is crucial because a frequency-selective channel limits achieving these data rates. For this reason, DC-HSDPA throughput real field measurements were taken in different propagation environments by using the “TEMS Investigation” program. The evaluation of the measurements showed that one-parameter linear mapping methods, such as signal-to-interference ratio and channel quality indicator, are insufficient for characterizing user throughput. Therefore, this study will propose a novel mapping method with more than one variable. Although multiple linear regression gives a better normalized root-mean-square error, results have shown that frequently used artificial neural network-based mapping methods—such as those for adaptive network-based fuzzy inference system, multilayer perceptron, and generalized regression neural network (GRNN)—yield improved accuracy. From among these, user throughput can be best estimated with the use of GRNN for a commercial DC-HSDPA system, with approximately 93.3 % precision. The GRNN structure allows system designers to update system parameters to maximize user throughput. © 2015, The Natural Computing Applications Forum.en_US
dc.identifier.doi10.1007/s00521-015-2054-1
dc.identifier.endpage274en_US
dc.identifier.issn0941-0643
dc.identifier.issn1433-3058
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-84940847795
dc.identifier.scopusqualityQ1
dc.identifier.startpage265en_US
dc.identifier.urihttps://doi.org/10.1007/s00521-015-2054-1
dc.identifier.volume28en_US
dc.identifier.wosWOS:000393051200004
dc.language.isoenen_US
dc.publisherSpringer Londonen_US
dc.relation.ispartofNeural Computing and Applicationsen_US
dc.relation.journalNeural Computing & Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectANFISen_US
dc.subjectDC-HSDPAen_US
dc.subjectGRNNen_US
dc.subjectMLPen_US
dc.subjectMultiple Linear Regressionen_US
dc.subjectReal Field Measurementsen_US
dc.subjectUser Throughputen_US
dc.titleA Novel Throughput Mapping Method for DC-HSDPA Systems Based on ANNen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files