Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.

Publication:
A Modified Genetic Algorithm for Forecasting Fuzzy Time Series

Loading...
Thumbnail Image

Date

Journal Title

Journal ISSN

Volume Title

Research Projects

Organizational Units

Journal Issue

Abstract

Fuzzy time series approaches are used when observations of time series contain uncertainty. Moreover, these approaches do not require the assumptions needed for traditional time series approaches. Generally, fuzzy time series methods consist of three stages, namely, fuzzification, determination of fuzzy relations, and defuzzification. Artificial intelligence algorithms are frequently used in these stages with genetic algorithms being the most popular of these algorithms owing to their rich operators and good performance. However, the mutation operator of a GA may cause some negative results in the solution set. Thus, we propose a modified genetic algorithm to find optimal interval lengths and control the effects of the mutation operator. The results of applying our new approach to real datasets show superior forecasting performance when compared with those obtained by other techniques. © 2014 Springer Science+Business Media New York.

Description

Citation

WoS Q

Q2

Scopus Q

Q2

Source

Applied Intelligence

Volume

41

Issue

2

Start Page

453

End Page

463

Endorsement

Review

Supplemented By

Referenced By