Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.

Publication:
A Modified Genetic Algorithm for Forecasting Fuzzy Time Series

dc.authorscopusid55927757900
dc.authorscopusid24282155300
dc.authorscopusid24282075600
dc.authorscopusid23093703600
dc.contributor.authorBas, E.
dc.contributor.authorUslu, V.R.
dc.contributor.authorYolcu, U.
dc.contributor.authorEgrioglu, E.
dc.date.accessioned2020-06-21T13:56:48Z
dc.date.available2020-06-21T13:56:48Z
dc.date.issued2014
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Bas] Eren, Department of Statistics, Giresun Üniversitesi, Giresun, Giresun, Turkey; [Uslu] Vedide Rezan, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Yolcu] Ufuk, Department of Statistics, Ankara Üniversitesi, Ankara, Turkey; [Egrioglu] Erol, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractFuzzy time series approaches are used when observations of time series contain uncertainty. Moreover, these approaches do not require the assumptions needed for traditional time series approaches. Generally, fuzzy time series methods consist of three stages, namely, fuzzification, determination of fuzzy relations, and defuzzification. Artificial intelligence algorithms are frequently used in these stages with genetic algorithms being the most popular of these algorithms owing to their rich operators and good performance. However, the mutation operator of a GA may cause some negative results in the solution set. Thus, we propose a modified genetic algorithm to find optimal interval lengths and control the effects of the mutation operator. The results of applying our new approach to real datasets show superior forecasting performance when compared with those obtained by other techniques. © 2014 Springer Science+Business Media New York.en_US
dc.identifier.doi10.1007/s10489-014-0529-x
dc.identifier.endpage463en_US
dc.identifier.isbn9780511611445
dc.identifier.isbn9780521884280
dc.identifier.issn1573-7497
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-84906787384
dc.identifier.scopusqualityQ2
dc.identifier.startpage453en_US
dc.identifier.urihttps://doi.org/10.1007/s10489-014-0529-x
dc.identifier.volume41en_US
dc.identifier.wosWOS:000341094000008
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherKluwer Academic Publishersen_US
dc.relation.ispartofApplied Intelligenceen_US
dc.relation.journalApplied Intelligenceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectForecastingen_US
dc.subjectFuzzy Time Seriesen_US
dc.subjectGenetic Algorithmen_US
dc.subjectMutation Operatoren_US
dc.titleA Modified Genetic Algorithm for Forecasting Fuzzy Time Seriesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files